Главная » Статьи » Молекулярный мотор из двух колец ДНК научили двигаться по заданному маршруту

Молекулярный мотор из двух колец ДНК научили двигаться по заданному маршруту

Julián Valero

Химики синтезировали молекулярный наномотор, состоящий из двух колец ДНК и присоединенного к ним фермента. При работе наномотора происходит вращение одного из колец ДНК, а также синтез молекулы РНК, которая остается прикрепленной к ферменту. Используя взаимодействие синтезируемой цепочки РНК с подложкой, наномотор можно направить по заранее заданному маршруту, пишут ученые в Nature Nanotechnology.

Молекулы со структурой катенана представляют собой два кольцевых молекулярных фрагмента, механически между собой соединенных в цепочку. Химической связи между двумя элементами молекулы не образуется и связаны они оказываются только топологически. Известно, что молекулы с подобной цепочечной структурой могут быть образованы как углеводородным скелетом с ароматическими и гетероциклическими группами, так и, например, молекулами ДНК. За счет возможности свободного вращения колец в такой структуре катенаны и родственные им ротаксаны часто используются в качестве элементов молекулярных машин. Например, именно благодаря подобным молекулам работают молекулярные турникеты и некоторые типы молекулярных насосов.

Группа немецких и американских химиков под руководством Микаэля Фамулока (Michael Famulok) из Боннского университета синтезировала биогибридный молекулярный мотор с катенановой структурой, который состоит из двух кольцевых цепочек ДНК и способен двигаться по заранее заданному маршруту. Каждое из колец в синтезированном катенане имеет свою функцию: большое кольцо, состоящее из 210 пар нуклеотидов, служит вращающимся «колесом», а маленькое кольцо из 168 пар нуклеотидов — своеобразным моторчиком для этого колеса. Вращение колеса осуществляется за счет фермента, присоединенного одновременно к обеим цепочкам ДНК, — РНК-полимеразы, работа которой осуществляется за счет гидролиза нуклеозидтрифосатов (например, АТФ). Размер всей системы составляет около 30 нанометров.

Используемый для движения молекулярного мотора фермент состоит из двух фрагментов, один из которых присоединяется к маленькому кольцу ДНК, а второй — к большому кольцу. При этом к более маленькому неподвижному нанокольцу, который выполняет функцию статора, фермент прикрепляется жесткой связью, а к большому подвижному кольцу с функцией ротора — так, чтобы фермент перемещался по двойной спирали ДНК, осуществляя ее вращение. Таким образом подвижное кольцо может вращаться со скоростью от 0,08 до 0,11 оборотов в минуту.

Побочным продуктом при работе мотора становится молекула РНК, которая остается прикрепленной к ферменту. Эту цепочку ученые предлагают использовать для того, чтобы заставить катенановый наномотор двигаться по заранее заданному маршруту.

В качестве направляющих для движения мотора авторы исследования предложили использовать нанотрубки из ДНК, к которым с определенным интервалом прикреплены небольшие одноцепочечные олигонуклеотиды. Изначально неподвижное кольцо молекулярного мотора закрепляется в одной из позиций на нанотрубке, после чего запускается вращение роторной части мотора и синтезируемая при этом молекула РНК за счет присоединения к торчащим наружу цепочкам заставляет мотор «перепрыгивать» вдоль нанотрубки. С помощью такого движения ученым удалось переместить наномотор вдоль нанотрубки на расстояние в несколько сотен нанометров.

Ученые отмечают, что предложенная ими архитектура достаточно простая и ее конфигурацию можно менять в зависимости от целей. Таким образом можно получать сложные биогибридные молекулярные машины, состоящие из большого количества элементов, работающих за счет гидролиза нуклеозидтрифосфатов.

Катенаны — не единственный пример сложных молекулярных структур с топологической связью, которая обеспечивается не химическим взаимодействием между атомами, а механически — за счет «запутывания» молекулярной структуры. Например, в прошлом году британские химики синтезировали рекордно сложную молекулу-узел с восемью перекрещиваниями молекулярной цепочки в своей структуре общей длиной 192 атома.

Александр Дубов